

B.FLT.5013 Assessment of the Australian Feedlot Enteric Methane Inventory Equation

Assoc Prof Fran Cowley & Dr Amelia de Almeida

National Greenhouse Gas Inventory

Energy, industrial processes and product use, land use, waste and agriculture.

National Greenhouse Gas Inventory Quarterly Update: Year to December 2023

Countries and regions that have joined Global Methane Agreements

	Zero Routine Flaring					\frown	Global M	ethane Pledge
Syria		R	-		C		C	C*
۲	Russia	Angola	Indonesia	Brazil	Uzbekistan	Australia	Pakistan	Libya
India			الف أمكير	<u>B</u>			(*	-
œ		Saudi Arabia	Iraq	Egypt	Kazakhstan	U.A.E.	Kuwait	Argentina
Algeria			*					
لب ارد		Turkmenistar	n Oman			Malaysia	Qatar	
۲ ۳ ۳		Methane Ac	tion Plans					
Venezuela		۲		*				
		Mexico	United states	Canada N	ligeria	European Union		
Thailand								
		**						
		China						

Where do feedlot emissions come from?

• Enteric methane

- Methane from manure
- Nitrous oxide from manure

Measuring methane on-farm?

3 Tiers of National Inventory methodologies for enteric methane

- **Tier 1**: default global emissions factor per head
- **Tier 2**: Country-specific emissions factors and equations
- **Tier 3**: Continuous, direct field measurement

Current Australian Tier 2 method

- Predicts methane emissions from diet content of :
 - Cell wall carbohydrates
 - Cellulose, Hemicellulose
 - Starches and non-fibre carbohydrates
- Equation developed by Moe & Tyrell (1979)
 - US dairy cattle data

• $CH_4 = [3.406 + 0.510 \times SR + 1.736 \times HC + 2.648 \times CEL]/0.05522$

Article Measurement of Long-Term CH₄ Emissions and Emission Factors from Beef Feedlots in Australia

Mei Bai^{1,*}, Trevor Coates², Julian Hill³, Thomas K. Flesch⁴, David W. T. Griffith⁵, Matthew Van der Saag⁶, Des Rinehart⁶ and Deli Chen¹

2022: Early modelling exercises...

Predicted National Inventory CH₄ (g/head.day)

University of New England

Validating prediction methodologies

- Historical database of gold-standard methane studies using Australian diets
- *In vivo* matrix study
 - -4 Levels of NDF
 - 4 levels of total fat (ether extract)

	Fat level (DMB,10 steers per fat level)					
		3 %	4.3 %	5.6 %	7 %	
F %	35 %	Starter/no fat	Starter/Low fat	Starter/Medium fat	Starter/High fat	28d
NDI	30 %	T1/no fat	T1/Low fat	T1/Medium fat	T1/High fat	28d
tal	25 %	T2/no fat	T2/Low fat	T2/Medium fat	T2/High fat	28d
To	20 %	Finisher/no fat	Finisher/Low fat	Finisher/Medium fat	Finisher/High fat	28d

In vivo study

UNE Livestock Emissions Research World's largest methane research facility

V.LOSS

V.LOSS

10

09/01 08.51.01

Grouping

Emissions monitored in open circuit respiration chambers

Hourly Flux of CH4

University of New England

Database composition

- 4 MLA-funded studies
- 384 individual records from 53 feedlot cattle
- Analysed 26 different barley-based diets
- 25 mg/kg DM of monensin

Fit of current equation to observed CH₄ emissions

 Current equation estimates CH4 from feedlot cattle on <u>average</u> to be 2.44 × observed emissions ('mean bias')

Equations Assessment

Evaluated literature equations used to predict feedlot cattle CH_4 production (g/d)

Equation	Description
Moe and Tyrrell (1979)	$CH_4 = [3.406 + 0.510 \times SR + 1.736 \times HC + 2.648 \times CEL]/0.05522$ (Current Inventory Method)
IPCC (2006)	$CH_4 = [(\frac{Y_m}{100}) \times GEI)]/0.05565$
IPCC (2019)	$CH_4 = (MY \times DMI)$
IPCC (2019)	$CH_4 = [(\frac{Y_m}{100}) \times GEI)]/0.05565$

Other alternative equations were also validated...

OStarter ●T1 ●T2 ●Finisher

University of New England

New equation: inputs analysed

- Dry matter intake/d
- Body weight
- Gross energy content of diet
- Crude protein content of diet
- Fat intake/d
- Fat content of diet
- NDF intake/d
- NDF content of diet
- Hemicellulose intake/d
- Cellulose intake/d
- ADF intake/d
- Soluble residues intake/d
- Starch intake/d

New equation: inputs available

- Dry matter intake/d
- Body weight
- Gross energy content of diet
- Crude protein content of diet
- Fat intake/d
- Fat content of diet
- NDF intake/d
- NDF content of diet
- Hemicellulose intake/d
- Cellulose intake/d
- ADF intake/d
- Soluble residues intake/d
- Starch intake/d

Australian-specific emission factor

Implications for Emissions from Lot-fed Cattle

- Previous IPCC reporting
 = 2.28 Mt CO2e/year
- Using the new equation
 - \blacktriangleright = 1.13 Mt CO₂e/year
 - 43.4% lower

Implications for Emissions from Lot-fed Cattle

Next steps

- Submission to the Department of Climate Change, Energy, the Environment and Water
- Change Australia's Tier 2 methodology
- Collect data from feedlot nutritionists on fat and NDF content of domestic- mid- and long-fed cattle
- Retrospectively update emissions from Australian grainfed beef cattle

1. In vivo study

Item	Diet					
	Starter	T1	T2	Finisher		
Ingredient, % DM						
Tempered Barley	36.7 - 53.7	53.0	67.8 - 69.5	80.1 - 85.7		
Oaten hay	16.3 - 26.5	16.3 - 19.1	8.7 - 11.0	2.2 - 3.8		
Mill run	5.3 - 11.1	3.0 - 11.1	0.0 - 5.7	- Cham		
Wheat straw	7.80-11.4	7.8 - 9.1	4.2 - 5.2	-		
Whole cottonseed	6.7 - 8.0	6.7	6.7 - 6.9	6.90		
Molasses	2.6	2.6	2.6	2.70		
Vegetable Oil	0.0 - 3.9	0.0 - 4.1	0.0 - 4.1	0.0 - 2.5		
Mineral Supplement	2.5	2.5	2.5	2.0		
Monensin (ppm)	25.0	25.0	25.0	25.0		
Chemical Composition (DM-basis)						
Moisture, % DM	19.4	19.8	19.5	19.1		
Organic Matter, % DM	93.1	93.6	95.0	95.8		
Ash, % DM	6.9	6.4	5.0	4.2		
Crude Protein, % DM	11.6	11.2	10.9	11.4		
Fat, % DM	3.0 - 6.4	3.0 - 6.7	3.2 - 6.5	3.4 - 7.1		
NDF, % DM	34.4	29.8	24.7	19.4		
ADF, % DM	16.6	13.6	10.9	7.80		
Lignin, %DM	2.32	1.79	1.59	1.18		
Starch, % DM	21.0	29.3	41.1	45.5		
GE, MJ/kg DM	18.0	18.1	19.2	19.4		
ME, MJ/kg DM	10.5	11.7	12.8	13.6		
Roughage % DM	35.1	29.3	18.1	6.21		

Methane measurements d 20, 27, 48, 55, 76, 83, 104, and 111

> University of New England

2. Equations Assessment

Summary statistics of all data included in the evaluation database

Item	Ν	Mean	SD	Minimum	Maximum
Dry matter intake (kg/d)	384	9.1	2.1	3.5	14.1
Body weight (kg)	384	412	71.0	163	737
Diet composition (% of DM)					
Crude protein	25	11.6	0.9	10.5	14.6
Ether extract	25	4.9	1.3	3.0	7.3
Neutral detergent fiber	25	27.1	5.7	18.9	44.2
Acid detergent fiber	25	11.9	3.4	7.3	19.9
GE (MJ/kg DM)	25	18.1	0.3	17.4	19.5
Hemicellulose	25	15.2	3.0	11.4	29.3
Cellulose	25	10.2	3.1	5.4	16.8
Starch	25	34.9	9.63	20.0	51.0
CH₄ emissions					
CH₄ production (g/d)	384	79.9	27.5	20.9	179
CH₄ yield (g/kg DMI)	384	9.3	3.74	1.97	21.1
Y _m (% of GE intake)	384	2.9	1.2	0.6	6.6

